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Abstract—Autonomous MAC and ALU processors and register 

files (three types of Silicon Objects) are implemented with custom 
logic to achieve 1GHz fixed-point multiply and accumulate. 
Synchronous programmable interconnect and embedded storage 
reduces the need for difficult index calculation and the use of 
external memory for intermediate values. The flexibility of the 
objects and their interconnect allows the level of parallelism to be 
chosen freely based on performance requirements and resource 
constraints. Arraying hundreds of objects in parallel in a single chip 
enables incredible DSP performance from a flexible, in-circuit 
reprogrammable architecture. 

For example, a 1024-point FFT with (16+16)-bit complex samples 
can be completed every 160 clock cycles (i.e., every 160 nanoseconds) 
using 64 butterflies (128 MAC, 128 ALU, and 64 RF objects) 
assisted by 128 ALU and 64 RF objects for inter-stage data routing. 
 

Index Terms—Digital Signal Processing (DSP), Application-
Specific Programmable Product (ASPP), Reconfigurable 
Architecture, Field-Programmable Object Array (FPOA). 

I. INTRODUCTION 

athStar is offering a massively parallel high-performance 
computation fabric. Individual processing units, called 

Silicon Objects, are programmed individually and act 
autonomously. Each object is less than 400x400 micrometers 
square, implemented in custom logic, allowing hundreds of high-
speed objects to be tiled on a single chip. Silicon Objects and 
their interconnect are programmed to construct computation 
macro blocks – composing simple scalar operations (addition, 
multiplication, logic, storage) into complex functions (e.g., 1024-
point FFT). Interconnect and instructions are configured after 
fabrication via PROM, resulting in a field-programmable object 
array (FPOA). All communication and processing is 
synchronized to a global clock (up to 1GHz), removing the 
design issue of analog timing closure altogether. 

II. SILICON OBJECT COMMUNICATION 

Silicon Objects communicate via 21-bit buses composed of the 
following: sixteen bits of data, one bit indicating the validity of 
the data (e.g., for event-driven programming), and four bits of 
user-defined side-band control signals. 

Communication proceeds synchronously and cooperatively. 
Buses are driven directly by registers (i.e., no intervening logic) 
for the most aggressive digital timing between objects. Values of 
interest are read by a cooperating receiving object; thus data is 
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pulled rather than pushed through the architecture. Objects 
synchronize to the same digital clock cycle (phase) via user 
programming of control signals and/or data patterns. 

The communication topology is a hybrid: objects can read 
registers from adjacent neighbors, or from any distance via 
pipelined “party lines.” Neighbor registers in diagonal and 
Manhattan directions are observed with no latency (the same as 
local registers). Party lines can turn, pass, land, and/or launch at 
every object hop. The land/launch combination can be chosen to 
insert a pipeline delay and restore digital coherency, thereby 
enabling communication at any distance (at the expense of 
latency and party line landing registers). The communication 
topology thus facilitates the programming of high-speed 
computation kernels of arbitrary size and shape. 

III. SILICON OBJECT TYPES 

Whereas the communication infrastructure across a given 
fabricated Silicon Object array is uniform, the silicon 
implementation of each element can be unique, yielding a 
heterogeneous array. The following are available element 
implementations, known as Silicon Object types. 

A. Multiply-Accumulate Object (MAC) 
The MAC object type accepts two 16-bit signed integer inputs 

every clock cycle, multiplies them together, and adds or subtracts 
the product into the 32-bit accumulated result. The accumulator 
can be configured either to saturate, or to wrap into an 8-bit over-
/underflow counter, tolerating up to 40-bit intermediate results. 
The entire accumulator is visible on object outputs and can be 
reset to zero or reloaded per control inputs, allowing either a new 
sequence to be started or a paused sequence to be resumed. The 
operation consumes fresh inputs and generates a result every 
clock cycle, with a processing latency of two clock cycles. 

B. Arithmetic-Logic Unit Object (ALU) 
The ALU is the most general-purpose object type. It employs a 

16-bit add, shift, and logic operator controlled by an 8-instruction 
state machine. Each instruction selects up to three 16-bit input 
words and a carry input bit, configures the operator (a.k.a. 
opcode), selects one or more result destination registers, and 
specifies conditional execution and branching options. This 
object type contains nine working registers (four for neighbors, 
five for party lines); two programmable constant registers; and 
two wired constants. Thus there are twenty-one possible inputs 
and nine possible outputs. In a single clock cycle, the current 
instruction is fetched and decoded, the operator is executed, the 
result is stored (subject to conditional execution), and the next 
instruction is selected per branching. 
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C. Register File (RF) 
The RF object type provides fast storage within the array. Up 

to two 20-bit values can be read and two 20-bit values written 
simultaneously every clock cycle, with an access latency of two 
clock cycles. Storage capacity is 64 20-bit words, also 
configurable as 32 40-bit words. 

The read and write ports can each be configured for random or 
sequential access. Thus, an RF can be configured as a dual-port 
RAM, a FIFO, or random-write sequential-read. The last 
combination, also known as “sort” mode, allows values to be 
written in an arbitrary index order, but then retrieved as a 
sequence without the burden of address generation. That is, 
values can be written to arbitrary addresses in anticipation of the 
order in which they will be read out. 

IV. FAST FOURIER TRANSFORM (FFT) VIA OBJECTS 

A. Complex Multiplication 
Two MAC objects can be efficiently ganged to multiply two 

complex numbers. Four products are generated, two of which are 
differenced, two of which are summed. Thus two MAC objects 
can generate a complex result every two clock cycles, with a 
latency of three clock cycles. 

MAC MAC

MACMAC

a + bj

a + bj

c + dj

c + dj

ac - bd (ad + bc)j

(-1)

Clock cycle #1:

Clock cycle #2:

Clock cycle #4:  

Figure 1: Complex Multiplication 

B. Radix-2 Butterfly 
The butterfly kernel within the FFT algorithm accepts two 

complex numbers from a previous FFT stage, multiplies one of 
the inputs with a twiddle factor (a complex constant), and 
performs a complex sum and difference, yielding two complex 
numbers for the next FFT stage. 

Consider the implementation of a decimation-in-time butterfly: 
out1 = in1+Wkin2, out2 = in1–Wkin2, where Wk is the complex 
twiddle factor. Due to the predictability of the twiddle factors, 
they are precalculated and stored into an RF object configured for 
sequential read mode – and address generation is not required. 

Thus the butterfly algorithm is as follows: 1. Fetch the 
precalculated complex Wk from the RF object. 2. Multiply Wkin2 
via two MAC objects (as described above). 3. Use two ALU 
objects to both sum and difference the complex product against 
in1 to generate outputs out1 and out2, respectively, over the next 
two clock cycles. Thus, butterfly outputs can be calculated every 
two clock cycles, with a latency of five clock cycles. 

ALU ALU

MAC

RF

MAC

in2

in1

Wk

Clock cycles #1-2:

Clock cycle #5:

Clock cycle #6:

in +1 W ink
2

in1    W ink
2

_

R

R

j

j

 

Figure 2: Decimation-In-Time Butterfly 

C. Fast Fourier Transform (FFT) 
Each stage of butterflies chooses a different pairing of the 

previous stage’s results (as well as different twiddle factors) until 
all of the FFT inputs affect all of the FFT outputs (i.e., 2n points 
require n stages). While a single butterfly can be leveraged to any 
size FFT, multiple parallel instantiations of the butterfly (in 
powers of two) increase the theoretical computational 
performance dramatically: 

# Butterflies MACs ALUs RFs Rate Latency 
1 2 2 1 1/(n2n+1) 3+n2n 
2 4 4 2 1/(n2n) 3+n2n-1 

2n-2 2n-1 2n-1 2n-2 1/4n 3+4n 
2n-1 2n 2n 2n-1 1/2n 3+2n 

n2n-1 n2n n2n n2n-1 1/2 3+2n 

Figure 3: Butterfly Parallelism for 2n-point FFT (n stages) 
(Rate is results per clock cycle. Latency is clock cycles.) 

Fortunately, practical performance does not substantially lag 
the theoretical ceiling. Butterflies are kept 100% utilized by 
providing two new complex inputs every two clock cycles. Either 
an RF object or two ALU objects can sustain this bandwidth 
indefinitely. The trick lies in efficient transitions between FFT 
stages. 

Every butterfly result is used precisely twice as an input into 
the next stage. Therefore, the butterfly results (two complex 
result every two clock cycles) are routed via ALU objects (with 
stage-specific directions) toward the two butterflies for the next 
FFT stage. An RF object sorts the complex data values into the 
correct order for the next stage using a nearby ALU object to 
generate stage-specific write addresses into the RF object. 

Performance is lost between stages only if the RF object 
cannot be loaded in time to start the next stage. In practice, index 
analysis of the data dependencies between stages allows the next 
stage to be started while the previous stage completes. 
(Ironically, fully parallelized butterflies cannot avoid stalling 
between FFT stages because none of them can start until the 
previous stage completes.) 

V. RESULTS 

A 1024-point FFT with (16+16)-bit complex samples can be 
completed every 160 nanoseconds using 64 butterflies (128 
MAC, 128 ALU, and 64 RF objects) assisted by 128 ALU and 64 
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RF objects for inter-stage data routing. An array of 25x25 objects 
provides the required number and arrangement (with over 100 
objects remaining for control sequencing), yet fits within a 10x10 
millimeter square of silicon. Note that the object commonality 
allows larger, smaller, and different mixes of object types, I/O, 
and on-chip RAM to be readily constructed according to specific 
application requirements. 
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Driving Philosophy
• FPGA time to market

– Programmable/configurable silicon
• Lower unit cost than FPGA

– Coarser programming higher density
• ASIC-like performance (1GHz)

– Custom logic
• Lower risk and easier design

– All analog problems are solved (timing, place & route)
– Just digital design (program = resource allocation)
– Use proven COTS chips with adequate resources or
– Assemble custom chips with very low risk
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Decisions

• Everything is globally synchronized
– No analog timing closure!

• Configured instructions (instead of streaming)
– Massive parallelism without massive instruction buses

• Uniform interconnect and object size
– Mix and match functions for different application 

spaces
– Scripted object placement, power, clocking
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Architecture
• Package functions into Silicon Objects (SOs)

– Homogeneous communication
– Heterogeneous functions

• Processors, memory, I/O
• Tile objects into an array

– Choose the mix of functions (including I/O)
to match the application space
• Lots-o-multipliers for DSP FFT and FIR
• Add high-speed I/O and CAM processors for networking

• Fabricate the object mix
• Program the application
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Sample Mix
• 21*21 = 441 SOs

– 6*16 =   96 MAC
– 6*8 =   48 RF
– rest = 297 ALU

• Periphery
– 12*7KB int. RAM
– 2*72b ext. RAM
– 2*16b LVDS
– 192 GPIO
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Communication
• Uniform bus structure:  21 bits

– 16-bit data value (R)
– 1-bit “valid” indicator (V)
– 4 bits of control (C)

• Configuration granularity
– R+V are handled as a unit
– Each C bit is configured independently

• Usage
– V can be used for event-driven (wave)
– C provides arbitrary sideband control

• Examples:  sign, carry, start of packet
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Communication Routing

• Nearest Neighbors (NN)
– Range = 1 (Manhattan + diagonals)
– Same speed as local registers

• Party Lines (PL)
– Range = Manhattan hop to 3 (skip 2)
– Extra clock cycles for digital retiming

• 1 extra 25-object neighborhood
• 2 extra 85-object neighborhood
• More clock cycles entire chip
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Silicon Object Types
• Arithmetic/Logic Unit (ALU)
• Multiply-Accumulate (MAC)
• Register File (RF)
• Truth Function (TF)
• CRC Generator (CRC)
• Pattern Processor (CAM)
• Internal RAM (IRAM)
• External RAM (XRAM)
• General-purpose I/O (GPIO)
• High-speed parallel I/O (Rx, Tx)
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Object Type:  ALU
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ALU Details
• Arithmetic-Logic Unit

– 16-bit data path
• Add/subtract, shift/rotate, AND/OR/XOR/mux
• Cascade larger words via status bit (SB)

– Decode, execute, retire in 1 cycle (1 ns)
– 8 configured instructions per object
– State is guided by control inputs

• Expressions of up to four C/V/SB/R bits
• Instruction offers four “next states”
• Branch expression selects one of the four
• Additional controls for conditional execution
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Object Type:  MAC
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MAC Details
• Multiply-accumulate

– 16x16 fixed-point multiplication
– 40-bit accumulator (8-bit overflow)
– Rate = every cycle, latency = 2 cycles

• 100 products in 101 cycles
– Number formats:  integer (16.0) and Q15 (1.15)
– Signed and unsigned multiplication

• Extended precision (32x32=64) in four MACs
– Control bit inputs effect optional

negation, accumulation, rounding
– 8-bit embedded counter (inner loop)
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Object Type:  RF
• Register File is a fast, small memory:

– 64 words of 20 bits (16R+4C)
– Three modes of operation

• Dual-ported RAM
• FIFO
• Sort:  random write, sequential read

– More control inputs to request read, request write
– More control outputs indicate read valid, FIFO status
– Rate = every cycle, latency = 2 cycles
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Object Type:  TF
• Truth Function generates four C bits

– Four C/V/SB/R input bits per C bit output
– Arbitrary functions via 4:1 lookup tables
– Cascade large control expressions

across multiple objects
– Rate = every cycle, latency = 1 cycle

• Integrate TF with ALU object
– ALU-TF is most general purpose
– Fine-grained control for state machines

and flow control (span clock domains, etc.)
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Object Type:  CRC
• CRC = cyclic redundancy code generator

– Single-cycle CRC-32 and CRC-16
– Processes 8, 16, or 18 bits of data per clock

• 18b for HyperTransport
– Rate = every cycle, latency = 3 cycles

• Integrate with RF object
– CRC is a very small circuit
– Choose RF or CRC function
– Span applications gracefully

• Applications with no CRC are not impeded
• Capacity for applications needing many CRCs

(e.g., multichannel POS Ethernet)
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Object Type:  CAM
• CAM = pattern recognition

– Input 20C or 16R+4C bits
– Sixteen 20-bit patterns with wildcards

• Each pattern bit is 0/1/x (x=wildcard)
– On row match, indicate “hit” on V, update 20-bit result
– Output 20C or 16R+4C bits
– Rate = every cycle, latency = 2 cycles
– Uses:

• Bit-field parsing (variable- or fixed-width fields)
• State machines (up to 16 transitions)
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Object Types:  IRAM, XRAM
• IRAM = Internal RAM

– Single-ported block RAM
– Spans two object columns, north or south

• Address and control via pl_ns3
• Data in/out via pl_ns1, pl_ns2

– Capacity = 768 lines of 76 bits = 57Kb = 7.125KB
– Rate = read or write at 500MHz, latency = 9 cycles

• XRAM = External RAM
– Single-ported SRAM or DRAM memory controller
– Same north/south object interface as IRAM (above)
– 72-bit data path * 21-bit address = 144Mb = 18MB
– Up to 250MHz DDR = 18Gb/s throughput
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Object Types:  GPIO, Rx/Tx
• GPIO = General-purpose I/O

– 2.5V CMOS, up to 100MHz
– Synchronized internally or externally
– 48 read/write pins to 2 object columns (or rows)

• 32 to R, 16 to C, configurable
• Rx,Tx = High-speed parallel I/O

– Configurable for 16-bit LVDS or 32-bit HSTL
• Up to 800MHz DDR LVDS (25Gb/s)

– Receive into 2,4,8 object rows (configurable demux)
– Transmit out of 2,4,8 object rows (configurable mux)
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DSP Algorithms in Objects
• Complex Multiplication
• Radix-2 DIT Butterfly
• Radix-4 DIF Dragonfly
• Fast Fourier Transform (FFT)
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Complex Multiplication

MAC MAC

MACMAC

a + bj

a + bj

c + dj

c + dj

ac - bd (ad + bc)j

(-1)

Clock cycle #1:

Clock cycle #2:

Clock cycle #4:

• Two MACs:  one real, one imaginary
• Rate = every other cycle
• Latency = 3 cycles
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Radix-2 DIT Butterfly
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Clock cycle #5:
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• 2 MACs, 2 ALU, 1 RF (Wk phase factors)
• Rate = every other cycle
• Latency = 5 cycles
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Radix-4 DIF Dragonfly
• Data = 3 sets of 4 complex numbers

– Input values, phase factors (twiddle), output values
• Algorithm (roughly)

– Output.r,i = Σ (+/- phase.r/i) * input.r,i = Σ 8 products
• Sequence of sign and phase.r vs. phase.i varies for each 

output
• Processors = 4 MACs (one per output), 2 RFs

– Each MAC calculates out.real then out.imaginary
• Route the complex output value to RF in next stage

– One RF streams the 4 complex inputs twice (8 integers)
– Other RF sends control sequence (16 clock cycles)

• Start (zero), choose positive/negative, choose phase.r/phase.i
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Dragonfly in Pictures
• Structure of one dragonfly tile

• Inter-dragonfly (inter-stage) routing

R R
M M
M M

objects = data flow = control flow =

Stage 1

Stage 2
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64-point FFT
• Fully pipelined 16 ns throughput

– 16 cycles per dragonfly, 48 pipelined dragonflies
– Out-of-order input and output
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1024-point FFT
• 1024-point FFT in 160ns

– 64 butterflies (128 MAC, 128 ALU, 64 RF)
– Several options for data movement

between butterfly stages
• Many DSP solutions use memory for data routing
• FPOA has a variety of options

– Use party lines to route:  two options per hop,
add as many levels of indirection as needed

– Use ALUs to route:  four NN and four PL options per ALU,
add as many levels of indirection as needed

– Use ALUs to track stride of each butterfly stage,
generate address into RF or IRAM

– Store address sequence in an RF or IRAM
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Tools

• Object HDL (OHDL) is the assembly 
language for the chip configuration
– Verilog structural modules and wires
– Object-specific assembly

• Design in SystemC (translates to 
OHDL) or code directly in OHDL
– Cycle-accurate simulation either way

• Assign chip resources via
Floorplanner GUI

• Compile to bit stream via Assembler

SystemC

OHDL

Floorplanner

Assembler

Chip
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Applications
• General-purpose mix

– Processors = ALU-TF, RF
– Periphery = IRAM, XRAM, GPIO

• DSP FFT and FIR
– Processors = ALU-TF, MAC, RF
– Periphery = Narrow IRAM, Narrow XRAM,

GPIO and/or LVDS
– Future processor:  FEC

• Networking
– Processors = ALU-TF, CAM, RF-CRC
– Periphery = Wide IRAM, Wide XRAM, LVDS, SerDes
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Roadmap
• First chip is a mixed mix

– Demonstrate both DSP and networking applications
• MACs for high-performance DSP FFT, FIR
• ALU-TF and RF-CRC for both DSP and networking
• 12 banks of IRAM (total 85.5KB)
• One bi-directional 16-bit LVDS interface (one Rx, one Tx)
• 192 CMOS GPIO pins (four GPIO objects)

• Next two chips are specialized
– DSP FFT, FIR

• More MACs, more fine-grained memory
– Networking

• SerDes I/O (4Gb/s), more bulk memory
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Conclusions
• The “object” approach (FPOA) enables

– High-speed programmable COTS silicon
• 20x20 processors = 10x10mm die = 400G ops/s at 20W

– Field upgrades via programming (PROM or JTAG)
• Program is loaded into embedded SRAM
• PROM can be AES-encrypted; FPOA can be copy-protected
• Field debug via AES-authorized JTAG

– High-performance alternative to FPGA
• FPOA is more coarse-grained

– Fewer “electron decisions” higher performance
– Low-risk alternative to ASIC

• Proven objects, just tile a new mix:  Tape-out < 1 month!
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